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the lowest e.s.d, values, in some cases by a factor of 2 
or more, but in the light of the work of Taylor & 
Kennard (1986) this may not be unrealistic. 
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ments. We thank Drs Olga Kennard FRS, Robin 
Taylor and Michael Doyle for their interest in this 
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Abstract 

It is shown that two unitary structure factors generate a 
two-parameter family of Harker-Kasper inequalities and 
that the strongest of these coincides with the third-order 
determinant Karle-Hauptman inequality. 

Inequality relationships among structure factors are 
called Harker-Kasper (HK) inequalities when they are 
obtained by the Cauchy-Schwartz inequality (Harker & 
Kasper, 1948). Their derivation requires algebraic 
manipulations of the unitary structure-factor (u.s.f.) 
expressions. Thus, HK inequalities in general have 
considerably different expressions, as is illustrated by, 
for instance, equations (6), (15) and (16) of Woolfson 
(1988). Moreover, Woolfson showed that some HK 
inequalities can be more effective that the lowest 
determinant Karle-Hauptman (Karle & Hauptman, 
1950) inequalities. Since it is commonly believed that 
HK inequalities are contained within the complete set of 
determinant inequalities, the former result does not 
conflict with this idea. This paper reports explicit proof 
of this in the case of the lowest-order inequality. More 
definitely, it is shown that a two-parameter family of HK 
inequalities, involving three reflexions, can be con- 
structed from two unitary structure factors and that the 
strongest of these inequalities, viz the one that holds true 
whatever the parameter values, is the third-order 
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determinant Karle-Hauptman (Karle & Hauptman, 
1950) inequality, in the form obtained by Goedkoop 
(1950). [For a recent review, see Hauptman (1991).] 

Since the analysis is derived from that of Woolfson 
(1988; hereinafter referred to as I), his notation is 
adopted. In order to prove the above statement, the effect 
of translations on the derivation of the HK inequality 
[equation (6a) of I] is first analysed. Translation of the 
origin by a implies that the u.s.f. U(h) [whose modulus 
IU(h)l is denoted /z(h), so that U ( h ) =  expiqg(h)/z(h)] 
becomes 

N 
Ua(h) = ~ nj exp[i2yrh.  (rj + a)] 

j=l 

-- exp[i2rra, h]U(h) 

-- exp[iCa(h)]U(h). (1) 

The same calculations of I, yielding inequality (6a) of I, 
can now be repeated bt starting with Ua(h) and Ua(k). 
They give 

I exp[i~ba(h)U(h)] + exp[iq~a(k)]U(k)I z 

_<2{1 + / z ( h - k ) c o s [ ~ o ( h - k ) +  27ra. ( h - k ) ] } .  

(2) 
With the definition 

8 -- qg(h - k) + 2rra. (h - k), (3) 
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inequality (2) becomes 

[ exp[i93(h, k) + 8]/z(h) + /z(k)[ 2 

< 211 + / z ( h -  k)cos(8)], 

where 

(4) 

~ ( h ,  k )  - -  ~0(h) - ~p(k) - ~0(h - k )  

is the triple-phase structure invariant of the involved 
u.s.f's. Since the arbitrariness of a implies that of 8, the 
strongest HK inequality resulting from (4) will be the one 
that is fulfilled for whatever 8 ~ [0, 2n'). In order to work 
out this relation, it is convenient to write inequality (4) as 

2{/z(h)/z(k) cos[~(h,  k) + 3] - / x ( h  - k)cos3} 

< 2 - [/z2(h) + /z2(k)]. (5) 

From the addition formula for circular functions and the 
definitions 

M ------ {[l,(h)/z(k)cos q~(h, k) - / ~ ( h  - k)] 2 

+ [/z(h)/z(k) sin fp3(h, ~)]2} 1/2, (6a) 

cos r -- [/z(h)/z(k)cos 93(h, k) - #(h - k) l /M, (6b) 

sin r = [/z(h)/z(k) sin 93(h, k)]/M, (6c) 

the left hand side (1.h.s.) of inequality (5) becomes 
2Mcos(8 + r). Inequality (5) reads 

cos(8 + r) _< [ 2 -  uZ(h) - /z2(k) l /2M.  

This constraint is fulfilled for any 8, i.e. for any 
translation, if and only if 

[2 - /~2(h)  - p,2(k)]/2M > 1. 

Simple algebraic manipulations convert this inequality 
into 

COS ~o3(h, k) 

> {[/z2(h) +/z2(k)  + / z2 (h -  k ) -  1] 

× [2/z(h)/z(k)/z(h - k)] -1} 

- {[/z2(h) -/z2(k)]2[8/z(h)/z(k)/z(h - k)]-t}, (7) 

which represents the strongest HK inequality with 
respect to all possible translations. Of course, the 
inequality is structure invariant and refers to the 
symmetry group P1. However, it is weaker than the 
third-order determinant Karle-Hauptman inequality 
(Goedkoop, 1950) 

c o s ~ ( h ,  k-) >_ [/x2(h) +/z2(k)  + / z 2 ( h -  k ) -  1] 

× [2/z(h)/z(k)/z(h - k)] -1 (8) 

involving the same reflexions. In fact, constraint (7) 
becomes equal to (8) only when/z(h) =/z(k) .  

From a mathematical point of view, inequality (7) has 
been obtained because all linear combinations, with 
unitary coefficients, of contributions U(h) and U(k) have 
been considered of the 1.h.s. of (2). Thus, in a certain 
sense, the vectorial structure assumed by Kitajgorodskij 
(1961) in working out the Karle-Hauptman relations has 
been exploited, though only in part, owing to the 
unimodularity constraint set on the coefficients. Conse- 
quently, the question arises as to whether an inequality 
stronger than (7) may not be obtained starting from the 
most general linear combination zUOl) + wU(k), where 
z and w are complex numbers. This is exactly what 
happens and the resulting inequality is the Karle- 
Hauptman combination. To clarify this point, put 

z = Izl exp[i arg(z)], (9a) 

w = Iwl exp[i arg(w)], (9b) 

S2 = arg(z) - arg(w), (9c) 

p -- (Iz[ 2 + Iwl2) 1/2, (10a) 

sin r - Izl/p, (10b) 

cos r = Iwl/p, (10c) 

where r obeys the constraint 

0 _< "r _< :r/2. (11) 

The result is 

zUa(h) + wUa(k) = pexp [i arg(z)] 

x {sin r exp[hPa(h)]U(h) 

+ cos rexp{i[~ba(k)- ;2]}U(k)}. 

The use of the Cauchy-Schwartz inequality and simple 
calculations yield 

I sin r exp[i4~a(h)] U(h) 

+ cos r exp{i [4~a(k) - $2]}U(k)[ 2 
N 

< Y~nj{1 + 2 s i n r c o s r  
j=l 

x cos[2~r(h- k) .  (rj + a) + £2]} 

= 1 + 2(sin r cos r)9~[Ua(h - k) exp(iI2)] 

= 1 + 2/z(h - k)(sin r cos r) cos[9(h - k) 

+ 2rra. ( h -  k) + 12]. 

With 8 9(h - k) + 27ra. (h - k) + 12, 

I/z(h)sin rexp{i[93(h,k)  + 8]} + / z ( k ) c o s r l  2 

< 1 + 2 / z ( h -  k) sin r cos r cos 3. (12) 

This is the family of the HK inequalities based on two 
reflexions and involving only three reflexions. It depends 
on the two parameters 8 and z. The inequality that holds 
true whatever 8 ~ [0,2rr) and r ~ [0, zr/2] is now 
obtained. 
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With 

and 

Ml(h, r) -- /z(h) sin r, 

ME(k, r) -- /z(k) cos v 

(13a) 

(13b) 

M3(h - k, r) -- 2/z(h - k) sin r cos r, (13c) 

inequality (12) becomes 

2Ml(h, v)M2(k, z)cos[q~3(h, k) + 8] 

_< 1 - M2(h, v) - ME(k, v) 

+ Ma(h -- k, v)cos(S (14) 

This can be written as 

where 

cos[93(h, k) + ~] --.A/'COS8 < ./L'f(z) (15) 

.Ad(v) - [1 - M~(h, v) - M2(k, v)] 

x [2Ml(h, r ) i 2 ( k ,  v)] -1 

and 

(16a) 

Af - M3(h - k, r)[2Ml(h, r)ME(k, r)] -1 

= / z ( h  - k)//z(h)/z(k). (16b) 

Constraint (15) is formally quite similar to (5). Thus, 
with 

`4 = {[COS ~o3(h, k) -- .Af] 2 + sin 2 q93(h, k-)} 1/E 

= [1 - 2N'cos93(h,  k) + A/'2] x/2, (17a) 

cos ~p -- [cos 93(h, k) - .Af]/`4, (17b) 

sin ~ ---- [sin 93(h, k)]/`4, (17c) 

inequality (15) becomes 

cos(~ + 8) _< M(r)/A. 

For this to be fulfilled for any 8, the result 

.AA(O > `4 (18) 

must be obtained. Since .A4 and ,4 are always positive, 
the inequality can be squared and, owing to the condition 
Af > O, becomes 

c o s ~ ( h ,  k) >_ (1 + .A/"E - A42)/2A/". 

The inequality holds true for any r ~ [0, zr/2] if and only 
if 

cos 93(h, k) >_ max[1 + Af 2 - A42(r)]/2N" 

= {1 + Af 2 - min[A42(r)]}/2A/". (19) 

In order to determine the mimimum value of .M2(r) in 
the interval 0 _< r _< zr/2, it is convenient to put 

x = sin 2 z and to write 

.Ad2(r) = .Ml(x)/4/z2(h)/z2(k) 

_= [1/4/z2(h)/z2(k)] 

x ({1 - /zZ(k)  - x[ /z2(h)  

--/.t2(k)]}Z/x(1 - x)). 

It is straightforward to show that, at 

x = xo -- [1 - / z 2 ( k ) ] / [ 2 -  p~Z(h) -/zZ(k)],  

A41(x) takes its minimum value equal to 

.A41(xo) = [1 -/z2(h)][1 -/zZ(k)]//z2(h)u2(k). 

By substitution of this result into (19), the strongest HK 
inequality, involving only three reflexions, 

cos93(h,k)  > [/z2(h) + /z2(k) + /zZ(h-  k) - 1] 

x [2/z(h)/z(k)/z(h - k)] -1 , (20) 

is obtained. It coincides with the third-order determinant 
Karle-Hauptman inequality. 

Finally, the constraint on the number of reflexions 
involved in the inequalities follows from the fact that the 
derivation of a HK inequality always requires an 
ingenious manipulation of the analytical expression 
relevant to the sum of the reflexions considered. 
Woolfson (1988) applied the Cauchy-Schwartz inequal- 
ity to the moduli of two u.s.f.'s and derived two 
examples [see (15) and (18) of I] of HK inequalities 
that involve more than three reflexions. Can stronger 
inequalities also be obtained in these cases by combining 
Woolfson's factorization with a linear combination of the 
u.s.f, moduli? The answer, unfortunately, appears to be 
no, because the procedure in general does not yield a 
linear combination of the reflexions appearing on the 
right-hand sides of (15) and (18) of I. For the same 
reason, the generalization of the proof expounded above 
to the case of inequalities relevant to more than three 
reflexions does not appear to be trivial. 

I am grateful to Professor A. D. Clemente for a useful 
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critical reading of the manuscript. Financial support from 
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edged. 
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